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Outline

* Goal: understanding the proton spin coming from small x

* Small-x helicity evolution:
* Observables: quark helicity TMD & PDF at small-x, g, structure function
* Small-x evolution for the “polarized dipole”: large-N limit

* Numerical solution of the large-N. evolution equations:

* small-x asymptotics of the g, structure function, quark hPDFs and
helicity TMDs

* impact on proton spin

* Analytic solution of the large-N. evolution equations:
* Pure joy



Our Goal: Proton Spin at Small x



Proton Spin Pie Chart

* The proton spin carried by the
qguarks is estimated to be
(for 0.001 <z < 1)

S,(Q* = 10GeV?) ~ 0.15 + 0.20

* The proton spin carried by the
gluonsiis (for 0.05 <z <1 )

Sc(Q? =10GeV?) ~ 0.13 +~ 0.26

* Unfortunately the uncertainties are
large. Note also that the x-ranges
are limited, with more spin
(positive or negative) possible at
small x.



How much spin is at small x?
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* E. Aschenaur et al, arXiv:1509.06489 [hep-ph]
* Uncertainties are very large at small x!
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Spin at small x

 The goal of this project is to provide theoretical understanding
of helicity PDF’s at very small x.
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parametrizations of the existing ¢ [ S
and new data (e.g., the data to '
be collected at EIC).

e Strictly-speaking we only talk
about quark helicity, but most
likely our analysis applies to
gluon hPDF’s as well.
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Quark Helicity Observables at Small x

o YL v

* One can show that the g, structure function and quark helicity PDF (Aq)
and TMD at small-x can be expressed in terms of the polarized dipole
amplitude (flavor singlet case):

1

N. N dz
91 (x Q ) ! Z2<1 _ Z /dx()l [ Z |77D>\O'O‘ |2x 1>%) + Z ’waa ’(3701 z) (:E()l?Z)ﬂ

2120

oo’

N.N dz dx?
A S 2y _ ¢ f/ 01 G 2
q (ma ) 273 J P J 33%1 <$017z>7
8N.N / d
S 2\ ciVf Z 2 —ik-(xy; —Zqrq) Lo1 * Lo/
B2y = e [0 2 d? 01~2or1) £OLTL0L 2
95 (x, k) (27)0 / - / To1 A" To1 € xglxg 3 (5501 z)

2

* Here s is cms energy squared, z=A%/s, G(xg,,2) = /d2b G1o(2)



Polarized Dipole

All flavor singlet small-x helicity observables depend on one object,
“polarized dipole amplitude”:
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Double brackets denote an object with energy suppression scaled out:
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Evolution for Polarized Quark Dipole

One can construct an evolution equation for the polarized dipole:
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Resummation Parameter

For helicity evolution the resummation parameter is different from BFKL,
BK or JIMWLK, which resum powers of leading logarithms (LLA)

o In(1/x)

Helicity evolution resummation parameter is double-logarithmic (DLA):

1
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The second logarithm of x arises due to transverse momentum integration
being logarithmic both in UV and IR.

This was known before: Kirschner and Lipatov '83; Kirschner ’84; Bartels,
Ermolaeyv, Ryskin ‘95, ‘96; Griffiths and Ross '99; Itakura et al ’03; Bartels
and Lublinsky ‘03.



Evolution for Polarized Quark Dipole
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Polarized Dipole Evolution in the Large-N_ Limit

In the large-N,. limit the equations close, leading to a system of 2 equations:
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S = found from BK/JIMWLK, it is LLA



You friendly “neighborhood” dipole

 Thereis a new object in the evolution equation — the neighbor dipole.

e This is specific for the DLA evolution. Gluon emission may happen in one
dipole, but, due to transverse distance ordering, may '’know’ about
another dipole:

0 > 0

2 / 2 /!

* We denote the evolution in the neighbor dipole 02 by FOQ 21 (z/)



Large-N_ Evolution: Strict DLA Limit

In the strict DLA limit we neglect the LLA evolution (put S=1)
and get:
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* The initial conditions are given by Born-level graphs, for which

F(O) (x%m 513%1, Z) - G(O) (33307 Z)



Initial Conditions

* |Initial conditions for all our evolution equations should be given by Born-
level interactions (“dressed” by multiple rescatterings in the saturation
case):
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Large-N_ Equations:
Numerical Solution

Yu.K., D. Pitonyak, M. Sievert, arXiv:1610.06188 [hep-ph]



Prior Results

* Small-x DLA evolution for the g, structure function was first considered by
Bartels, Ermolaev and Ryskin (BER) in ‘96.

* Including the mixing of quark and gluon ladders, they obtained

X g NC

1 Zs 27
S
X

with z, = 3.45 for 4 quark flavors and z.=3.66 for pure glue.
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 The power is large: it becomes larger than 1 for the realistic strong
coupling of the order of o, = 0.2 - 0.3, resulting in polarized PDFs which
actually grow with decreasing x fast enough for the integral of the PDFs
over the low-x region to be (potentially) large (infinite).



Large-N. Equations

* We want to find the numerical solution of the large-N_ DLA evolution
equations (linearized, without saturation corrections):
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Large-N. Equations

* Interms of the new variables the equations become
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G(s10,m) = G (s10,m) + /dn’/d521 [['(s10,521,m") + 3G (s21,7')]
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e The initial conditions are

G (s10,m) = T s10, 521,7) = @2 SE[Cr 1 — 2(n — s10)]



Numerical Solution

 We discretize the equations
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and solve them by progressively
populating each fixed-n row in s.

e The solution for G looks like this:

Log[G(s10,7)]
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Extracting the intercept

 The solution for G grows
exponentially with rapidity n:

Log[G(s10,7)]

 We read off the “intercept”
(the slope of In G vs 1) for
different-size lattices and step sizes,
and extrapolate the intercept
to the continuum:

22



Solution of the large-N. Equations

Log[G(s10,7)]

s N,
2
* The resulting small-x asymptotics is
1\ @ 1 2:31 e
65 (2, Q%) ~ AgS(w, Q%) ~ g5, (2, k2) ~ (5) ~ (‘)

* Ourresult, 2.31, is about 35% smaller than BER’s 3.66 any-N. pure glue.



Intercepts

Here we plot our (flavor-singlet) helicity intercept as a function of the coupling.
We show BER result and LO BFKL (all twist and leading twist) for comparison.

Intercept
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Impact on proton spin

 We have attached a Ai(az, Q?) = N x~“" curve to the existing hPDF’s

fits at some ad hoc small value of x labeled x, :
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phenomenology



Impact on proton spin

1

+ Defining AxEmnl(Q?) = / dr AS(z,Q?) we plot it for x,=0.03, 0.01,
0.001: emin
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 We observe a moderate to significant enhancement of quark spin.
 More detailed phenomenology is needed in the future.



Impact on proton spin
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Large-N_ Equations:
Analytic Solution

Yu.K., D. Pitonyak, M. Sievert, arXiv:1703.05809 [hep-ph]



Scaling

e Consider our numerical
solution again

B ozchl Z8 O fag N, In 1
= e HF 0= 2 x35 A2

* Itis well approximated by

Log[G(s10,7)]

G(s10,7m) o< 23! (17 510)

* This motivated us to look for the solution in the following
scaling form:
G(s10,m) = G(n — s10)
I'(s10,521,1") =T (0" — s10,1" — s21)



Scaling Equations

* The large-N_ evolution equations can be rewritten in terms of
the scaling variables (not a trivial property, does not work for
the large-N_&N; equations):
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* For simplicity, pick the following initial conditions:

G0)=1, I'(.¢)=G6(()



Analytic Solution

* These scaling equations can be solved exactly via Laplace
transform + a few clever tricks, yielding

2
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/ _ CUC—FZ
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* As usual, the high-energy asymptotics is given by the right-
most pole in the complex o-plane: the pole is at w = ++/3.



Analytic Solution and Intercept

* The contribution of the pole at w = +V/3 is
G(¢) ~ Zevst

¢ <4ecx/§/ — 3)
— G(¢) (46% - 3>
* The corresponding helicity intercept is

4 aSNC aSNC
= — 4/ ~ 2.3094 4/
ah V3 27 S0 27

* Thisis in complete agreement with the numerical solution!
P\

2T

Sl

€

Sl

€

Wl — W[

I'(¢.¢) ~

ap ~ 2.31



Conclusions

We have constructed new DLA evolution equations for the polarized dipole
operator, which allow us to find the small-x asymptotics of the quark
helicity TMDs and PDFs and of the g, structure function.

Like the B-JIMWLK hierarchy, our equations do not close in general. They
close in the large-N. and large-N-&N; limits.

Solution of the flavor singlet evolution equations at large-N gives

oas N,
1 1

gls(x7Q2) ~ Aqs(x,Q2) ~ 915L<x7k%> N <_) _ <_>\/§ 27

i T

which may potentially generate a solid amount of spin at small-x.

Future work includes gluon helicity TMD at small x (coming soon) and may
involve including running coupling and saturation corrections + solving the
large-N-&N; equations.
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Polarized “Wilson line”

Our polarized “Wilson line” is defined as (for purely gluonic
exchanges with the target)

| 00 o0 i x
75 /deexp{ig/da:’A+(:U’,x)} ingA(x,a:)PeXp{ig / d:z:’A+(x’,33)}
s

— 00 — OO

x

where Ag(z™,z) = %A(x‘@) is the spin-dependent gluon field
1

of the plus-direction moving target. (A* is the unpolarized

eikonal field.)

In preparation...



Polarized Dipole Evolution in the Large-N_&N; Limit

In the large-N_&N; limit the equations close too, leading to a closed system of 5 equations:
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Large-N_&N; Evolution

 The evolution equations read (in the strict DLA limit, S=1):
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Intercepts

 We can summarize some LO intercepts, including the ones we found,
in the following table:

Q% =3 GeV?|Q? = 10 GeV?|Q?* = 87 GeV~

Observable Evolution Intercept as = 0.343 as = 0.249 as = 0.18
Unpolarized flavor singlet LO BFKL Pomeron 1+ O‘STNC 41n2 1.908 1.659 1.477
structure function Fb5
Unpolarized flavor non-singlet | Reggeon \/ QQ;CF 0.540 0.460 0.391
structure function F5
Flavor singlet us (Pure Glue) 2.31 \/a;]:fc 0.936 0.797 0.678
structure function g7 BER (Pure Glue) 3.66 0‘371:[‘3 1.481 1.262 1.073

BER (N; = 4) 3.45 ) 2sfe 1.400 1.190 1.011
Flavor non-singlet BER and us (large-N.) \/ O‘STNC 0.572 0.488 0.415

structure function gp

NS

BER 17—|— as N,
— /T, faele o 3 66
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Comparison with BER

To better understand BER work,
we tried calculating one (real)
step of DLA helicity evolution
for the qg->qq scattering.

It appears that we have identified
the k,>> k; (or k;>> k,) regime

in which diagrams A, B, C, D, E, |
are DLA, which was not
considered by BER for B, C, ... I.
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Helicity Evolution at Small x
flavor non-singlet case

Yu.K., D. Pitonyak, M. Sievert, arXiv:1610.06197 [hep-ph]



Flavor Non-Singlet Observables

* In the flavor non-singlet case, all helicity observables again depend on the
polarized dipole amplitude:

1
2 T 2 L |2
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* Polarized dipole amplitude is different (difference instead of sum):

GNO(2) = 2]1\[6 <<tr [VQVEOH} — tr [VfOZVQT} >> (2)
e Thisis related to the definition

Ag™5 (2,Q%) = Ad! (2, Q%) — A7 (2, Q%)




Flavor Non-Singlet Evolution

* Evolution equations end up being much simpler in the non-singlet case:

0 > 0 =
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e Analytical solution (in the DLA case, S=1) leads to (in agreement with
Bartels et al, ‘95)
1

g{VS(:E,Qz) ~ AqNS(ZE,QQ) ~ Q{VLS(ZE’ k%) ~ (_) ~ (_> TF

X

 The resulting intercept is smaller than the flavor-singlet intercept.



